

1. Introduction

The goal of this project was to explore how the various methods discussed in CS 205 for solving

ODE’s and can be implemented on graphics hardware in the context of physical simulation. For this project

I implemented a real-time cloth simulation with collision detection.

My goals for the simulation itself, in priority order, were:

1) Realistic visual appearance

2) Fast rendering speed

3) Accuracy

These priorities dictated design choices made throughout the project.

Graphics hardware is heavily parallelized with support for fast floating-point vector math; an optimal

combination for real-time graphics and simulation. In addition to its speed, GPU implementations provide

the additional advantage of alleviating CPU load. If the computational cost of a cloth simulation in a video

game, for example, were passed on to GPU, it would free up vital CPU load which can in turn be used for

AI, etc.

I’ve been interested in GPU programming since I first played with an Xbox Dev kit during my

internship at LucasArts in 2001. The Xbox featured a version of NVidia GeForce 3, the first generation of

graphics cards to support genuine real-time programmable vertex and fragment (pixel) shading.

Since then, I’ve done work in haptics and rendering, but I never found a good opportunity to try my

hand at real-time GPU programming. The open-ended nature of the CS 205 final project assignment

provided me with this opportunity.

The entire simulation runs on the GPU. The only time any simulation data is ever loaded into system

memory occurs in one line of code where the scaled position data is transferred immediately without

modification from the pixel shader to the vertex shader (see Hardware Limitations).

2. Methods

CS205 Final Project:
Real-Time Cloth Simulation on the GPU

Sam Z. Glassenberg

glassenb@stanford.edu

2.1. Software Platform

I wrote this project in C# using DirectX 9. All pixel and vertex shaders are written in High-Level

Shading Language (HLSL) using the DirectX 9 Technique format.

This project could certainly have been implemented in C++, OpenGL, and/or Cg (NVidia’s high-level

shading language, not to be confused with Conjugate Gradient discussed later). However, I’m already

familiar with C++ and OpenGL and wanted to learn new platforms.

2.2. Hardware

I developed the simulation on a 2.4 GHz Pentium 4 with an ATI 9700 Pro All-In-Wonder graphics

card. The simulation is heavily optimized for (and dependent on) the ATI 9700 Pro. This was the top-

of-the-line video card six months ago, and has a variety of key features including support for second-

generation hardware shading languages (ps 2.0 and vs 2.0) and multiple simultaneous render targets.

The device itself is still limited to a subset of hardware features support by the latest release of DirectX

9. If the program is run on a card with insufficient support, it will terminate.

2.2.1. Hardware Limitations

Successful implementation entailed working around the many limitations of second-generation graphics

hardware. It turns out that many of these are slated to be resolved by future devices.

• No Vertex Shader Output

It would make more intuitive sense to perform the per-vertex physics calculations on a vertex shader as

opposed to a pixel shader. Unfortunately, vertex shaders can’t output results to any sort of buffer. Their

results are interpolated between pixels and passed only to pixel shaders within their adjacent triangles.

• No Indirect Writes

Pixel shaders can only output to their assigned position within the render target texture. In order to write to

a location in a texture, a triangle must be drawn on top of it with an associated pixel shader. The render

target cannot be simultaneously used as an input.

• No Vertex Shader Texture Access

Vertex shaders can only read from vertex buffers and a short list of constant variables. All physics

calculations need to be performed by pixel shaders on textures, but at some point the cloth needs to be

rendered as a vertex mesh. This problem could be avoided if a pointer to a float4 texture in video card

memory could be passed as a similarly-formatted float4 vertex buffer in the same memory space. This is

also not permitted. The only workaround is to copy the texture data to system memory and send the pointer

right back to the graphics card. This process is not only slow, it incurs the additional headache of clamping

all floating-point values to the range [0.0,1.0].

Vertex shaders reading from textures will be supported in vs 3.0.

• Quantitative limitations

The ATI 9700 pro supports a maximum of four render targets. A vertex shader program can therefore

have a maximum of four outputs. Each shader can execute a maximum of 64 instructions per-pixel or

vertex. Additional instructions require a separate rendering pass. The simulation’s collision-detection

shader, for example, has exactly 64 instructions. Many other shaders had to be split up and reorganized in

order to accommodate this requirement.

The 9700 does not fully support single-precision floating point textures. It provides a maximum of 24

bits of floating point precision, introducing additional rounding error for sensitive simulations.

The card has a limitation of four levels of texture indirection in a shader. This did not affect anything I

tried to implement, but will be a factor in several of the proposals outlined in Future Work. Lack of support

for certain texture addressing modes (i.e. border) also proved to be a nuisance.

2.3. Implementation

2.3.1. Spring Model

Cloth was simulated as a series of point masses connected by massless structural & bending springs. The

total force on each cloth point was computed as:



=+=

N

ji
i jispringgravitytotal fff 0),(



For N connected springs. Spring(i,j) represents the spring from i to j. Spring forces were calculated using

Hooke’s spring law:

)),((),(),()()|(| jispringdampingjijispringjisjispring fppdlppkf +−•−−−=


Where pi is the point position, and dl represents the default length of the spring.

Two separate damping methods were implemented:

1) Damping in the spring-direction (as described in Matyka04):

)())()(()),((jijijidjispringdamping ppppvvkf


−−•−−=

2) Artificial viscosity (as described in Desbrun01)

)()),((jidjispringdamping vvdtkf


−−=

Acceleration was calculated using Newton’s second law.

2.3.2. Data Storage

All per-cloth-point and per-spring data is stored in 32-bit floating-point textures of dimensions [w,h], where

w and h are the number of cloth points in the x and y directions, respectively. This could easily be

generalized to non-rectangular, arbitrary meshes by reducing the dimension of the textures to 1 and using

an additional level of indirection (see Future Work).

The simulation is computed by repeatedly rendering a screen-aligned rectangle mesh over the render target

texture. The mesh is rendered using a variety of pixel shaders that perform force calculation, explicit

integration, collision detection, weighting, etc.

The mesh’s texture coordinates are scaled to the range [0-0.5/n,1.0.5/n] where n is the number of pixels in

that dimension. This guarantees that input/render operations will be performed at the pixel’s center. All

image filtering, depth checking, etc. is turned off.

 To achieve maximum frame rate, the challenge was to write pixel shaders that were as

comprehensive as possible, generating as many outputs as possible (max 4), while remaining under the 64-

operation limit. Using input data is costly- reading data from a 4-component float texture uses up four clock

cycles, whereas any vector math operation only uses one.

Using the rectangular model, the springs connected to a given cloth point are implicitly defined by

the point’s interpolated texture coordinate. The orientation (forward or backward) of the spring force

relative to the point can also be determined. There are eight springs connected to each internal cloth point.

All springs of a certain type in a given direction are stored as a texture: Horizontal structural springs,

Vertical structural springs, Horizontal bending springs, Vertical Bending Springs.

Bending Springs

Structural Springs

Since texture coordinates are automatically clamped or mirrored, additional checks were needed to ensure

that a cloth point on an edge didn’t include nonexistent springs. These checks would not be necessary if the

hardware supported “border” texture addressing, which would allow all spring forces to be automatically

set to zero if a texture was addressed with coordinates outside of the range [0,1].

Shearing forces, which would require an additional two passes to satisfy the render target and operation

count limit, were not implemented.

2.3.3. Stream Processing

The diagram below illustrates the simplest simulation process, for the Euler solver. The process has

additional textures and steps when other solvers are used. Collision detection has a separate pixel/vertex

shader set described later. The constraints texture is represented by the letter “C”. To simplify the diagram,

it is shown at a higher level of abstraction: texture reference swapping is not shown.

Initialize Position

Texture (CPU)
(0,0,0)

Pn Vn

Compute Spring/Damping Forces

Fstruct_x Fstruct_y Fbend_x Fbend_y

Euler Integrator

Pn+1 Vn+1

C

Initialize

Constraints

Rendering Preparation

Once per

Simulation

Every

Timestep

Collision Detection

Pn+1 Vn+1

Draw Cloth

Every

Visible

Frame

Pscaled
Nscaled

CDCCW

CDCW

Collision

Map

Generator

Legend

Texture

Pixel Shader

Vertex Shader

Texture → Vertex Buffer Transfer

CPU Process

Screen

2.3.4. Solvers

I implemented several solvers using this model. All solvers compute totalf


, and check the constraints

texture to determine if the current point should be moved at all. Acceleration is computed using Newton’s

second law.

Euler is the most straightforward solver:

nnn adtvv


*1 +=+

nnn vdtpp


*1 +=+

2nd-Order-Accurate TVD Runge Kutta is computed using the Euler integration pixel shader and a

second, averaging pixel shader that combines the results. The following diagram replaces the “Euler

Integrator” box in the previous figure:

Pn Vn

Compute Spring/Damping Forces

Fstruct_x Fstruct_y Fbend_x Fbend_y

Euler Integrator

Pn+1 Vn+1

C

Collision Detection

Pn+1 Vn+1

CDCCW

CDCW
Collision

Map

Generator

Compute Spring/Damping Forces

Fstruct_x Fstruct_y Fbend_x Fbend_y

Euler Integrator

Pn+2 Vn+2

TVD RK Weighted Average

Pn+1 Vn+1

It’s easy to see how this model could be expanded to a higher order RK scheme such as RK4.

Adams Bashforth uses two of its own pixel shaders, as well as seven additional textures to store previous

acceleration and velocity textures. For the first three updates, a modified Euler pixel shader is used. This

Euler pixel shader renders Acceleration as well, and the thus the rendered Acceleration and Velocity

textures are used to fill the initial An-x and Vn-x textures.

Pn Vn

Compute Spring/Damping Forces

Fstruct_x Fstruct_y Fbend_x Fbend_y

Adams-Bashforth Integrator

C

Vn-1

Vn-2

Vn-3

An-1

An-2

An-3

Pn+1 AnVn+1

I also worked on a Verlet integrator. I realized from reading several papers that “Verlet integrator” includes

a variety of different algorithms. I used the version described by (Jacobson03) that appears to be used in

most game engines. The previous position (Pn-1) is stored explicitly, and is subtracted from the current

position instead of storing velocity.

2.3.5. Collision Detection

Like the rest of the simulation, collision detection is performed entirely on the GPU.

A good volume of GPU collision research is being performed at UNC. [Govindajaru03] describes

an interesting GPU-based collision-detection algorithm. After reading the paper, it appears that this scheme

is loosely GPU-based. Triangles are rendered over and over again in forward and reverse order, and the

CPU constantly performs occlusion queries on the graphics card to determine if the previously rendered

triangle/surface is in a “Potentially Colliding Set”. From these queries, the CPU determines which groups

of triangles have potentially collided and reduces the set and repeats until it has identified colliding

triangles. This algorithm doesn’t quite fit with the GPU-only mantra of the project.

 I decided to write a simpler algorithm that would work for the majority of arbitrary geometry that

one would want to collide with cloth in a video game (projectiles, characters, vehicles, etc). I wanted to

simulate friction with moving surfaces, to generate a sphere-spinning-cloth-twisting animation similar to

the one created for [Bridson02].

I originally thought of using a single depth map, but it’s clear that this method won’t even allow a

piece of cloth wrap around a sphere.

 The “collision scene” is rendered in two passes using a vertex and pixel shader (with depth testing

enabled). The vertex shader computes both the current and previous world transform for the current vertex,

and determines velocity of the vertex from the difference. This velocity is placed in the first 3 coordinates

of the vertex color output. The fourth coordinate holds the Z-value of the vertex in world coordinates.

Finally, the vertex shader transforms the vertex’s world position into collision-map-render-space. The

video card interpolates these values across the triangle and the pixel shader renders it to a collision map. In

the first pass, the scene is rendered using back-face culling. This renders the object faces closest to the cloth

start point. In the second pass, the scene is rendered using front-face culling, which renders the faces on the

other side of the object(s).

 Collision detection is performed by projecting the cloth position into collision-map-texture-space

(different from render-space due to a DirectX convention). The Z coordinate in texture space is sampled in

both the “front” and “back” collision maps. If the current cloth z-position lies between these two, there’s a

collision. The closer collision map (front/back) is determined, and the point is pushed back out by

computing the normal from a gradient of the collision map. The cloth point is assigned the velocity stored

in the collision map, thereby moving it with the colliding surface. More interesting collision-dynamics

could be simulated (accurate coefficients of friction, etc.), but this would incur disproportionate

computational cost of additional passes as the collision detection shader clocks in at exactly 64 instructions.

2.3.6. Rendering/Shading

This is the only point in the process where the CPU gets involved. In order to be fed to the vertex

buffer, the position data must first be copied to a location in system memory. This same pointer is

immediately recast and passed directly to the vertex shader. Unfortunately, this process also clamps all

floating-point values to [0.0,1.0], restricting the cloth to a very small box. To overcome this, a “pre-

rendering” pixel shader, which runs once per visible frame, scales the position data to this range. This “pre-

rendering” shader also computes the cloth surface normals at each cloth point.

The vertex buffer is un-scaled and transformed to screen coordinates by a vertex shader, which also

computes per-pixel diffuse lighting.

The process of copying the texture to system memory and drawing to screen is the slowest part of the

process. To alleviate the problem, multiple timesteps are computed between each visible frame. At each

frame, the length of time from the start of the last visible frame is calculated, and divided by the maximum

timestep to determine the number of iterations to perform before displaying the next frame.

3. Results/Analysis

When I first got the program to produce some cloth-like motion a couple weeks ago, I was astounded at the

framerates I was observing. They left CPU-based cloth simulation programs I’d seen in the dust. In the

weeks following, I hammered the GPU with more complex cloth, collision detection, and multi-pass

integrators and I’m still getting great visual results at high framerates.

The ATI 9700 Pro All-In-Wonder does more than push a ridiculous number of triangles: It also includes a

TV-Tuner card. I originally intended to connect the card’s video output back into the input to record results

in real-time. As could be expected, however, recording to a file while rendering significantly reduced

framerate. Eftychis preferred the results not arrive on videotape, so I rendered the results frame-by-frame

into a video file. Actual real-time frame rates for these simulations are listed:

2500 Cloth Points

TVD-RK2 Integration

Collision Map Dimension: 200

Timestep: 0.001

FPS (real-time):

 41 (Euler), 15.5 (TVD-RK2)

Video Link:
http://www.stanford.edu/~glassenb/szg/cloth/50x50_RK2_205_collision_wmv9.avi

900 Cloth Points

Adams-Bashforth Integration

No Collision

Timestep: 0.0003

FPS (real-time): 28

Artificial Viscosity

Video Link:

http://www.stanford.edu/~glassenb/szg/cloth/30x30_AB_ArtificialVisc_0.0003.avi

http://www.stanford.edu/~glassenb/szg/cloth/50x50_RK2_205_collision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/30x30_AB_ArtificialVisc_0.0003.avi

900 Cloth Points

TVD-RK2 Integration

Timestep: 0.001

Collision Map Dimension: 100

FPS (real-time): 32

Video Link:
http://www.stanford.edu/~glassenb/szg/cloth/30x30_RK2_Sphere_collision_noconstraints_wmv9.avi

2500 Cloth Points

Euler Integration

Timestep: 0.002

Collision Map Dimension: 100

FPS (real-time): 82

Video Link:

http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_Sphere_collision_wmv9.avi

2500 Cloth Points

Euler Integration

Timestep: 0.001

Collision Map Dimension: 100

FPS (real-time): 28

Video Link:
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_box_collision.mpg

10,000 Cloth Points

Euler Integration

Timestep: 0.001

Collision Map Dimension: 100

FPS (real-time): 9

Video Link:
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Euler_SmallBox.mpg

http://www.stanford.edu/~glassenb/szg/cloth/30x30_RK2_Sphere_collision_noconstraints_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_Sphere_collision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_box_collision.mpg
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Euler_SmallBox.mpg

10,000 Cloth Points

Euler Integration

Timestep: 0.001

No Collision.

FPS (real-time): 42

kd = 15

ks = 500

Low Gravity

Video Link:
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_Euler_kd15_ks500_lograv_wmv9.avi

2,500 Cloth Points

Euler Integration

Timestep: 0.0005

No Collision.

FPS (real-time): 83

kd = 15

ks = 500

Video Link:

http://www.stanford.edu/~glassenb/szg/cloth/50x50_NoConst_Euler_kd15_ks500_nocollision_wmv9.avi

With updates on the order of 1000 per second, the stability of a particular simulation can be determined

quickly.

The following video illustrates this phenomenon. The timestep in this scenario (0.0008) was too large for

Adams-Bashforth:

(Video Link: http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_AB_dt0.0008_wmv9.avi)

 It is clear from both damping equations that stability is heavily affected the damping coefficient.

One advantage of artificial viscosity over spring damping is that its stability region is unaffected by

anything but the timestep and kd.. It is observed that in situations where the simulation is close to the edge

of the stability region, an increase in the gravitational force will cause divergence in the spring-damped

system. This does not occur when artificial viscosity is used. Nonetheless, artificial viscosity produces

http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_Euler_kd15_ks500_lograv_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_NoConst_Euler_kd15_ks500_nocollision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_AB_dt0.0008_wmv9.avi

significantly less realistic results. With both equations, when the damping coefficient is set close enough to

zero, neutral stability is observed, and high-frequency oscillations can be seen:

(Video Link: http://www.stanford.edu/~glassenb/szg/cloth/Low_kd.avi)

In most cases, the stability region for RK2 was only slightly wider than Euler’s. In a simulation

with 900 cloth points, ks=150, g=-9.8, and a set timestep of 0.001, TVD-RK remained stable for a damping

coefficient up to 11. Euler’s stability region extended to 9.

Adam Bashforth’s stability region was much smaller. For a damping coefficient of 10, Euler

remained stable as long as the timestep stayed below 0.00093 and TVD-RK2 below 0.00104. Adams-

Bashforth lost stability if the timestep went above 0.00014. The measured stability threshold ratio between

Euler and Adams-Bashforth is very close to the calculated one: Measured: 0.00093/0.00015 = 6.2.

Calculated: -2/(-3/10)  6.66.

Finally, one of the advantages of storing all physics data in textures is the interesting patterns that

result. The following is an animated velocity texture for a 10,000-point piece of cloth constrained at two

points without collision detection:

(Link: http://www.stanford.edu/~glassenb/szg/cloth/100x100_vel_nocollision_wmv9.avi)

4. Future Work

4.1. Implicit Integration

So far all ODE solvers implemented are purely explicit. Although it would certainly not be trivial to

implement an implicit method that runs in the GPU, prior research indicates that it is certainly possible.

What’s questionable is whether second-generation hardware like the ATI 9700 will be able to perform the

necessary computations in real-time.

 [Desbrun01] describes a predictor-corrector method that integrates linear forces (predictor) and

corrects for angular momentum. This algorithm doesn’t look conducive to GPU processing, due to its

dependence on reductions.

 It would be more interesting to implement something along the lines of the mixed Explicit/Implicit

time integration method described in [Bridson03]. This method limits implicit integration to damping

forces, but allows for a much larger timestep. The question is whether the overhead of a GPU conjugate

gradient solver outweighs this gain.

 A dense CG solver, although straightforward to implement, would be out of the question due to its

computational cost. Results from [Moravanszky03] indicate that the time to complete a dense matrix

multiply of a matrix of dimension 1000 is almost one second. According to [Bridson03], “typically less

http://www.stanford.edu/~glassenb/szg/cloth/Low_kd.avi
http://www.stanford.edu/~glassenb/szg/cloth/100x100_vel_nocollision_wmv9.avi

than ten and sometimes as few as one or two [CG] iterations are needed” for each timestep in the model,

making real-time calculation with a dense solver out-of-the question.

 A sparse solver is more promising. A cloth damping matrix would have only as many nonzero

elements in a row as connected springs, whereas the dimension is equal to the total number of cloth points.

[Bolz03] describes a sparse GPU-CG solver implemented using a reasonable level of indirection. Their

results indicate that the GPU-CG solver should be able to perform 110 iterations per second, but driver

limitations significantly reduce actual performance. As a result, all performance statistics mentioned in the

paper are normalized as if the limitations did not exist; actual performance stats on the hardware are not

provided.

 I spoke with Ian Buck about this, but he was also unsure about the performance of CG-GPU

solvers. He did, however, show me how development of these stream-based algorithms is much more

straightforward in Brook, a new high-level shading language being developed at Stanford.

4.2. Inverse Dynamics Constraints/Artificial Damping

This would be straightforward to implement in the existing framework and would provide additional

realism and stability. [Matyka03] classifies restricting spring length to a certain percentage past its default

length as “Inverse Dynamics Constraints”. Goeff Irving strongly disagrees, ascribing the term “artificial

damping” to this phenomenon. Either way, calculating position-shifts due to this constraint could be

performed when spring forces are calculated and stored in a separate texture. This would require splitting

spring force calculation into multiple passes, which would be necessary anyway to simulate shearing forces

(another potential stabilizer).

4.3. Extension to Arbitrary Cloth Meshes

The results of this project indicate that simulation performance is more significantly affected by the number

of passes (indicated by the timestep and method used), rather than the number of cloth points. By adding an

additional level of indirection and reducing the number of texture dimensions to one, this simulator could

be extended to work for arbitrary meshes (shirts, dresses, etc.) The cloth point position texture would be a

one-dimensional array. Instead of implicit spring/cloth point associations, a single 1D spring texture would

contain texture coordinates pointing to two cloth point locations the cloth position texture (as well as

storing the default length of the spring). Another texture set (at least two would be necessary, possibly

three) would hold pointers to connected springs for each cloth point. The relation of the point to the spring

force (forward or backward) could be stored as the sign of this 1D texture coordinate – Mirrored texture

address mode could be used to automatically correct for the sign.

4.4. Spline Surface Interpolation

Instead of performing costly physics calculations on a large number of cloth points, a good visual result

could be achieved by using a smaller number of cloth points and spline-interpolating between these points

using a vertex shader as described in [Dunlop02].

4.5. Wind

By calculating surface normals at every timestep as opposed to every visible frame, these values could be

used to calculate wind force against the cloth surface.

5. Acknowledgements

In addition to the CS205 teaching staff, I’d like to thank Mike Mandel, Ian Buck, Josh Bao, Goeffrey

Irving, and Neil Molino for taking the time to meet with me to discuss cloth simulation and GPU

programming.

6. References

1) Engel, WF et al. “Direct3D ShaderX”. Wordware Publishing. Texas, 2002.

2) “DirectX 9.0 Programmer's Reference”. Microsoft Corporation 2003.

3) Heath, MT. “Scientific Computing: An Introductory Survey”. Second Edition. McGraw-Hill. New

York, 2002.

4) Miller, T. “Managed DirectX 9 Graphics and Game Programming”. Sams Publishing.

Indianapolis, 2004.

5) Matyka, M. “Inverse Dynamic Displacement Constraints in Real-Time Cloth and Soft-Body

Models” in Graphics Programming Methods. Charles River Media. Hingham, 2003.

6) Desbrun, M et al. “Interactive Animation of Cloth-like Objects for Virtual Reality”. The Journal of

Visualization and Computer Animation, Volume 12, Issue 1, May 2001, pages 1-12.

Online: http://www-grail.usc.edu/pubs/DMB_chapterBook.pdf

7) Jacobson, T. “Advanced Character Physics”. Gamasutra. 2003.

Online: http://www.gamasutra.com/resource_guide/20030121/jacobson_04.shtml

8) Govindajaru, NK et al. “CULLIDE: Interactive Collision Detection Between Complex Models in

Large Environments using Graphics Hardware”. In Graphics Hardware. ACM

SIGGRAPH/Eurographics 2003.

Online: http://www.cs.unc.edu/~geom/CULLIDE/cullide.pdf

9) Bridson, R et al. “Simulation of Clothing with Folds and Wrinkles”. Eurographics/SIGGRAPH

Symposium on Computer Animation, 2003.

Online: http://graphics.stanford.edu/papers/cloth2003/cloth.pdf

10) Moravanszky, A. “Dense Matrix Algebra on the GPU”. In ShaderX2 Programming. 2003.

Online: http://www.shaderx2.com/shaderx.PDF

11) Bolz, J et al. “Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid”.

SIGGRAPH 2003

Online: http://www.multires.caltech.edu/pubs/GPUSim.pdf

12) Buck, I. “Data Parallel Computation on Graphics Hardware”. Presentation at Graphics Hardware,

2003.

Online: http://graphics.stanford.edu/~ianbuck/GH03-Brook.ppt

13) Dunlop, R. “Synthesizing Patches Using Vertex Shaders”. 2002. Online:

http://www.mvps.org/directx/articles/shadeland/splinevshade3.htm

14) Bridson, R et al. “Robust Treatment of Collisions, Contact and Friction for Cloth Animation”.

SIGGRAPH 2002, ACM TOG 21, 594-603 (2002).

Online: http://graphics.stanford.edu/~fedkiw/papers/stanford2002-01.pdf

15) Fedkiw, R. “CS205: Class Notes”. Stanford University, 2003.

Online: http://www.stanford.edu/class/cs205/

http://www-grail.usc.edu/pubs/DMB_chapterBook.pdf
http://www.gamasutra.com/resource_guide/20030121/jacobson_04.shtml
http://www.cs.unc.edu/~geom/CULLIDE/cullide.pdf
http://graphics.stanford.edu/papers/cloth2003/cloth.pdf
http://www.multires.caltech.edu/pubs/GPUSim.pdf
http://graphics.stanford.edu/~ianbuck/GH03-Brook.ppt
http://www.mvps.org/directx/articles/shadeland/splinevshade3.htm
http://graphics.stanford.edu/~fedkiw/papers/stanford2002-01.pdf

