
 

 

 

 
 

1. Introduction 

 

The goal of this project was to explore how the various methods discussed in CS 205 for solving 

ODE’s and can be implemented on graphics hardware in the context of physical simulation. For this project 

I implemented a real-time cloth simulation with collision detection. 

My goals for the simulation itself, in priority order, were: 

1) Realistic visual appearance 

2) Fast rendering speed 

3) Accuracy 

These priorities dictated design choices made throughout the project.  

Graphics hardware is heavily parallelized with support for fast floating-point vector math; an optimal 

combination for real-time graphics and simulation. In addition to its speed, GPU implementations provide 

the additional advantage of alleviating CPU load. If the computational cost of a cloth simulation in a video 

game, for example, were passed on to GPU, it would free up vital CPU load which can in turn be used for 

AI, etc. 

I’ve been interested in GPU programming since I first played with an Xbox Dev kit during my 

internship at LucasArts in 2001. The Xbox featured a version of NVidia GeForce 3, the first generation of 

graphics cards to support genuine real-time programmable vertex and fragment (pixel) shading. 

Since then, I’ve done work in haptics and rendering, but I never found a good opportunity to try my 

hand at real-time GPU programming. The open-ended nature of the CS 205 final project assignment 

provided me with this opportunity.  

The entire simulation runs on the GPU. The only time any simulation data is ever loaded into system 

memory occurs in one line of code where the scaled position data is transferred immediately without 

modification from the pixel shader to the vertex shader (see Hardware Limitations). 
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2.1. Software Platform 

 

I wrote this project in C# using DirectX 9. All pixel and vertex shaders are written in High-Level 

Shading Language (HLSL) using the DirectX 9 Technique format. 

This project could certainly have been implemented in C++, OpenGL, and/or Cg (NVidia’s high-level 

shading language, not to be confused with Conjugate Gradient discussed later). However, I’m already 

familiar with C++ and OpenGL and wanted to learn new platforms. 

 

2.2. Hardware 

 

I developed the simulation on a 2.4 GHz Pentium 4 with an ATI 9700 Pro All-In-Wonder graphics 

card. The simulation is heavily optimized for (and dependent on) the ATI 9700 Pro. This was the top-

of-the-line video card six months ago, and has a variety of key features including support for second-

generation hardware shading languages (ps 2.0 and vs 2.0) and multiple simultaneous render targets.  

The device itself is still limited to a subset of hardware features support by the latest release of DirectX 

9. If the program is run on a card with insufficient support, it will terminate. 

 

2.2.1. Hardware Limitations 

Successful implementation entailed working around the many limitations of second-generation graphics 

hardware. It turns out that many of these are slated to be resolved by future devices. 

 

• No Vertex Shader Output 

It would make more intuitive sense to perform the per-vertex physics calculations on a vertex shader as 

opposed to a pixel shader. Unfortunately, vertex shaders can’t output results to any sort of buffer. Their 

results are interpolated between pixels and passed only to pixel shaders within their adjacent triangles. 

 

• No Indirect Writes 

Pixel shaders can only output to their assigned position within the render target texture. In order to write to 

a location in a texture, a triangle must be drawn on top of it with an associated pixel shader. The render 

target cannot be simultaneously used as an input. 

 

• No Vertex Shader Texture Access 

Vertex shaders can only read from vertex buffers and a short list of constant variables. All physics 

calculations need to be performed by pixel shaders on textures, but at some point the cloth needs to be 

rendered as a vertex mesh. This problem could be avoided if a pointer to a float4 texture in video card 

memory could be passed as a similarly-formatted float4 vertex buffer in the same memory space. This is 

also not permitted. The only workaround is to copy the texture data to system memory and send the pointer 

right back to the graphics card. This process is not only slow, it incurs the additional headache of clamping 

all floating-point values to the range [0.0,1.0]. 

Vertex shaders reading from textures will be supported in vs 3.0.  

 

• Quantitative limitations 

The ATI 9700 pro supports a maximum of four render targets. A vertex shader program can therefore 

have a maximum of four outputs. Each shader can execute a maximum of 64 instructions per-pixel or 

vertex. Additional instructions require a separate rendering pass. The simulation’s collision-detection 

shader, for example, has exactly  64 instructions. Many other shaders had to be split up and reorganized in 

order to accommodate this requirement. 

The 9700 does not fully support single-precision floating point textures. It provides a maximum of 24 

bits of floating point precision, introducing additional rounding error for sensitive simulations. 

The card has a limitation of four levels of texture indirection in a shader. This did not affect anything I 

tried to implement, but will be a factor in several of the proposals outlined in Future Work. Lack of support 

for certain texture addressing modes (i.e. border) also proved to be a nuisance. 

 

 

2.3. Implementation 



 

2.3.1. Spring Model 

 

Cloth was simulated as a series of point masses connected by massless structural & bending springs. The 

total force on each cloth point was computed as: 
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For N connected springs. Spring(i,j) represents the spring from i to j. Spring forces were calculated using 

Hooke’s spring law: 
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Where pi is the point position, and dl represents the default length of the spring. 

Two separate damping methods were implemented: 

1) Damping in the spring-direction (as described in Matyka04): 
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2) Artificial viscosity (as described in Desbrun01) 
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Acceleration was calculated using Newton’s second law. 

 

2.3.2. Data Storage 

 

All per-cloth-point and per-spring data is stored in 32-bit floating-point textures of dimensions [w,h], where 

w and h are the number of cloth points in the x and y directions, respectively. This could easily be 

generalized to non-rectangular, arbitrary meshes by reducing the dimension of the textures to 1 and using 

an additional level of indirection (see Future Work). 

The simulation is computed by repeatedly rendering a screen-aligned rectangle mesh over the render target 

texture. The mesh is rendered using a variety of pixel shaders that perform force calculation, explicit 

integration, collision detection, weighting, etc. 

The mesh’s texture coordinates are scaled to the range [0-0.5/n,1.0.5/n] where n is the number of pixels in 

that dimension. This guarantees that input/render operations will be performed at the pixel’s center. All 

image filtering, depth checking, etc. is turned off. 

 To achieve maximum frame rate, the challenge was to write pixel shaders that were as 

comprehensive as possible, generating as many outputs as possible (max 4), while remaining under the 64-

operation limit. Using input data is costly- reading data from a 4-component float texture uses up four clock 

cycles, whereas any vector math operation only uses one. 

Using the rectangular model, the springs connected to a given cloth point are implicitly defined by 

the point’s interpolated texture coordinate. The orientation (forward or backward) of the spring force 

relative to the point can also be determined. There are eight springs connected to each internal cloth point. 

All springs of a certain type in a given direction are stored as a texture: Horizontal structural springs, 

Vertical structural springs, Horizontal bending springs, Vertical Bending Springs.  
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Structural Springs 

 

Since texture coordinates are automatically clamped or mirrored, additional checks were needed to ensure 

that a cloth point on an edge didn’t include nonexistent springs. These checks would not be necessary if the 

hardware supported “border” texture addressing, which would allow all spring forces to be automatically 

set to zero if a texture was addressed with coordinates outside of the range [0,1]. 

Shearing forces, which would require an additional two passes to satisfy the render target and operation 

count limit, were not implemented.  

 

2.3.3. Stream Processing 

The diagram below illustrates the simplest simulation process, for the Euler solver. The process has 

additional textures and steps when other solvers are used. Collision detection has a separate pixel/vertex 

shader set described later. The constraints texture is represented by the letter “C”. To simplify the diagram, 

it is shown at a higher level of abstraction: texture reference swapping is not shown. 
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2.3.4. Solvers 

I implemented several solvers using this model. All solvers compute totalf


, and check the constraints 

texture to determine if the current point should be moved at all. Acceleration is computed using Newton’s 

second law. 

 

Euler is the most straightforward solver: 

nnn adtvv


*1 +=+  

nnn vdtpp


*1 +=+  

 

2nd-Order-Accurate TVD Runge Kutta is computed using the Euler integration pixel shader and a 

second, averaging pixel shader that combines the results. The following diagram replaces the “Euler 

Integrator” box in the previous figure: 
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It’s easy to see how this model could be expanded to a higher order RK scheme such as RK4. 

 

Adams Bashforth uses two of its own pixel shaders, as well as seven additional textures to store previous 

acceleration and velocity textures. For the first three updates, a modified Euler pixel shader is used. This 

Euler pixel shader renders Acceleration as well, and the thus the rendered Acceleration and Velocity 

textures are used to fill the initial An-x and Vn-x textures. 
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I also worked on a Verlet integrator. I realized from reading several papers that “Verlet integrator” includes 

a variety of different algorithms. I used the version described by (Jacobson03) that appears to be used in 

most game engines. The previous position (Pn-1) is stored explicitly, and is subtracted from the current 

position instead of storing velocity.  

 

2.3.5. Collision Detection 

Like the rest of the simulation, collision detection is performed entirely on the GPU.  

A good volume of GPU collision research is being performed at UNC. [Govindajaru03] describes 

an interesting GPU-based collision-detection algorithm. After reading the paper, it appears that this scheme 

is loosely GPU-based. Triangles are rendered over and over again in forward and reverse order, and the 

CPU constantly performs occlusion queries on the graphics card to determine if the previously rendered 

triangle/surface is in a “Potentially Colliding Set”. From these queries, the CPU determines which groups 

of triangles have potentially collided and reduces the set and repeats until it has identified colliding 

triangles. This algorithm doesn’t quite fit with the GPU-only mantra of the project. 

 I decided to write a simpler algorithm that would work for the majority of arbitrary geometry that 

one would want to collide with cloth in a video game (projectiles, characters, vehicles, etc). I wanted to 

simulate friction with moving surfaces, to generate a sphere-spinning-cloth-twisting animation similar to 

the one created for [Bridson02]. 

I originally thought of using a single depth map, but it’s clear that this method won’t even allow a 

piece of cloth wrap around a sphere. 

 The “collision scene” is rendered in two passes using a vertex and pixel shader (with depth testing 

enabled). The vertex shader computes both the current and previous world transform for the current vertex, 

and determines velocity of the vertex from the difference. This velocity is placed in the first 3 coordinates 

of the vertex color output. The fourth coordinate holds the Z-value of the vertex in world coordinates. 

Finally, the vertex shader transforms the vertex’s world position into collision-map-render-space.  The 

video card interpolates these values across the triangle and the pixel shader renders it to a collision map. In 

the first pass, the scene is rendered using back-face culling. This renders the object faces closest to the cloth 

start point. In the second pass, the scene is rendered using front-face culling, which renders the faces on the 

other side of the object(s). 

 Collision detection is performed by projecting the cloth position into collision-map-texture-space 

(different from render-space due to a DirectX convention). The Z coordinate in texture space is sampled in 

both the “front” and “back” collision maps. If the current cloth z-position lies between these two, there’s a 

collision. The closer collision map (front/back) is determined, and the point is pushed back out by 

computing the normal from a gradient of the collision map. The cloth point is assigned the velocity stored 



in the collision map, thereby moving it with the colliding surface. More interesting collision-dynamics 

could be simulated (accurate coefficients of friction, etc.), but this would incur disproportionate 

computational cost of additional passes as the collision detection shader clocks in at exactly 64 instructions. 

 

2.3.6. Rendering/Shading 

This is the only point in the process where the CPU gets involved. In order to be fed to the vertex 

buffer, the position data must first be copied to a location in system memory. This same pointer is 

immediately recast and passed directly to the vertex shader. Unfortunately, this process also clamps all 

floating-point values to [0.0,1.0], restricting the cloth to a very small box. To overcome this, a “pre-

rendering” pixel shader, which runs once per visible frame, scales the position data to this range. This “pre-

rendering” shader also computes the cloth surface normals at each cloth point. 

The vertex buffer is un-scaled and transformed to screen coordinates by a vertex shader, which also 

computes per-pixel diffuse lighting. 

The process of copying the texture to system memory and drawing to screen is the slowest part of the 

process. To alleviate the problem, multiple timesteps are computed between each visible frame. At each 

frame, the length of time from the start of the last visible frame is calculated, and divided by the maximum 

timestep to determine the number of iterations to perform before displaying the next frame. 

 

3. Results/Analysis 

 

When I first got the program to produce some cloth-like motion a couple weeks ago, I was astounded at the 

framerates I was observing. They left CPU-based cloth simulation programs I’d seen in the dust. In the 

weeks following, I hammered the GPU with more complex cloth, collision detection, and multi-pass 

integrators and I’m still getting great visual results at high framerates.  

The ATI 9700 Pro All-In-Wonder does more than push a ridiculous number of triangles: It also includes a 

TV-Tuner card. I originally intended to connect the card’s video output back into the input to record results 

in real-time. As could be expected, however, recording to a file while rendering significantly reduced 

framerate. Eftychis preferred the results not arrive on videotape, so I rendered the results frame-by-frame 

into a video file. Actual real-time frame rates for these simulations are listed: 

 

 
2500 Cloth Points 

TVD-RK2 Integration 

Collision Map Dimension: 200 

Timestep: 0.001 

FPS (real-time):  

            41 (Euler), 15.5 (TVD-RK2) 

Video Link: 
http://www.stanford.edu/~glassenb/szg/cloth/50x50_RK2_205_collision_wmv9.avi  

 
900 Cloth Points 

Adams-Bashforth Integration 

No Collision 

Timestep: 0.0003 

FPS (real-time): 28 

Artificial Viscosity 

Video Link: 

http://www.stanford.edu/~glassenb/szg/cloth/30x30_AB_ArtificialVisc_0.0003.avi  

http://www.stanford.edu/~glassenb/szg/cloth/50x50_RK2_205_collision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/30x30_AB_ArtificialVisc_0.0003.avi


 
900 Cloth Points 

TVD-RK2 Integration 

Timestep: 0.001 

Collision Map Dimension: 100 

FPS (real-time): 32 

Video Link: 
http://www.stanford.edu/~glassenb/szg/cloth/30x30_RK2_Sphere_collision_noconstraints_wmv9.avi  

  
2500 Cloth Points 

Euler Integration 

Timestep: 0.002 

Collision Map Dimension: 100 

FPS (real-time): 82 

Video Link: 

http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_Sphere_collision_wmv9.avi  

 
2500 Cloth Points 

Euler Integration 

Timestep: 0.001 

Collision Map Dimension: 100 

FPS (real-time): 28 

Video Link: 
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_box_collision.mpg  

 
10,000 Cloth Points 

Euler Integration 

Timestep: 0.001 

Collision Map Dimension: 100 

FPS (real-time): 9 

Video Link: 
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Euler_SmallBox.mpg  

http://www.stanford.edu/~glassenb/szg/cloth/30x30_RK2_Sphere_collision_noconstraints_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_Sphere_collision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_Euler_box_collision.mpg
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Euler_SmallBox.mpg


 
10,000 Cloth Points 

Euler Integration 

Timestep: 0.001 

No Collision. 

FPS (real-time): 42 

kd = 15 

ks = 500 

Low Gravity 

Video Link: 
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_Euler_kd15_ks500_lograv_wmv9.avi  

 
2,500 Cloth Points 

Euler Integration 

Timestep: 0.0005 

No Collision. 

FPS (real-time): 83 

kd = 15 

ks = 500 

 

Video Link: 

http://www.stanford.edu/~glassenb/szg/cloth/50x50_NoConst_Euler_kd15_ks500_nocollision_wmv9.avi  

 

With updates on the order of 1000 per second, the stability of a particular simulation can be determined 

quickly. 

The following video illustrates this phenomenon. The timestep in this scenario (0.0008) was too large for 

Adams-Bashforth: 

 

 
(Video Link: http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_AB_dt0.0008_wmv9.avi)  

 

 It is clear from both damping equations that stability is heavily affected the damping coefficient. 

One advantage of artificial viscosity over spring damping is that its stability region is unaffected by 

anything but the timestep and kd.. It is observed that in situations where the simulation is close to the edge 

of the stability region, an increase in the gravitational force will cause divergence in the spring-damped 

system. This does not occur when artificial viscosity is used. Nonetheless, artificial viscosity produces 

http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_Euler_kd15_ks500_lograv_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/50x50_NoConst_Euler_kd15_ks500_nocollision_wmv9.avi
http://www.stanford.edu/~glassenb/szg/cloth/100x100_Const_AB_dt0.0008_wmv9.avi


significantly less realistic results. With both equations, when the damping coefficient is set close enough to 

zero, neutral stability is observed, and high-frequency oscillations can be seen: 

 
(Video Link: http://www.stanford.edu/~glassenb/szg/cloth/Low_kd.avi)  

In most cases, the stability region for RK2 was only slightly wider than Euler’s. In a simulation 

with 900 cloth points, ks=150, g=-9.8, and a set timestep of 0.001, TVD-RK remained stable for a damping 

coefficient up to 11. Euler’s stability region extended to 9.  

Adam Bashforth’s stability region was much smaller. For a damping coefficient of 10, Euler 

remained stable as long as the timestep stayed below 0.00093 and TVD-RK2 below 0.00104. Adams-

Bashforth lost stability if the timestep went above 0.00014. The measured stability threshold ratio between 

Euler and Adams-Bashforth is very close to the calculated one: Measured: 0.00093/0.00015 = 6.2. 

Calculated: -2/(-3/10)  6.66. 

Finally, one of the advantages of storing all physics data in textures is the interesting patterns that 

result. The following is an animated velocity texture for a 10,000-point piece of cloth constrained at two 

points without collision detection: 

 
(Link: http://www.stanford.edu/~glassenb/szg/cloth/100x100_vel_nocollision_wmv9.avi)  

 

 

 

4. Future Work 

4.1. Implicit Integration 

So far all ODE solvers implemented are purely explicit. Although it would certainly not be trivial to 

implement an implicit method that runs in the GPU, prior research indicates that it is certainly possible. 

What’s questionable is whether second-generation hardware like the ATI 9700 will be able to perform the 

necessary computations in real-time. 

 [Desbrun01] describes a predictor-corrector method that integrates linear forces (predictor) and 

corrects for angular momentum. This algorithm doesn’t look conducive to GPU processing, due to its 

dependence on reductions.   

 It would be more interesting to implement something along the lines of the mixed Explicit/Implicit 

time integration method described in [Bridson03]. This method limits implicit integration to damping 

forces, but allows for a much larger timestep. The question is whether the overhead of a GPU conjugate 

gradient solver outweighs this gain.  

 A dense CG solver, although straightforward to implement, would be out of the question due to its 

computational cost. Results from [Moravanszky03] indicate that the time to complete a dense matrix 

multiply of a matrix of dimension 1000 is almost one second. According to [Bridson03], “typically less 

http://www.stanford.edu/~glassenb/szg/cloth/Low_kd.avi
http://www.stanford.edu/~glassenb/szg/cloth/100x100_vel_nocollision_wmv9.avi


than ten and sometimes as few as one or two [CG] iterations are needed” for each timestep in the model, 

making real-time calculation with a dense solver out-of-the question. 

 A sparse solver is more promising. A cloth damping matrix would have only as many nonzero 

elements in a row as connected springs, whereas the dimension is equal to the total number of cloth points. 

[Bolz03] describes a sparse GPU-CG solver implemented using a reasonable level of indirection. Their 

results indicate that the GPU-CG solver should be able to perform 110 iterations per second, but driver 

limitations significantly reduce actual performance. As a result, all performance statistics mentioned in the 

paper are normalized as if the limitations did not exist; actual performance stats on the hardware are not 

provided. 

 I spoke with Ian Buck about this, but he was also unsure about the performance of CG-GPU 

solvers. He did, however, show me how development of these stream-based algorithms is much more 

straightforward in Brook, a new high-level shading language being developed at Stanford.  

 

4.2. Inverse Dynamics Constraints/Artificial Damping 

This would be straightforward to implement in the existing framework and would provide additional 

realism and stability. [Matyka03] classifies restricting spring length to a certain percentage past its default 

length as “Inverse Dynamics Constraints”. Goeff Irving strongly disagrees, ascribing the term “artificial 

damping” to this phenomenon. Either way, calculating position-shifts due to this constraint could be 

performed when spring forces are calculated and stored in a separate texture. This would require splitting 

spring force calculation into multiple passes, which would be necessary anyway to simulate shearing forces 

(another potential stabilizer). 

 

4.3. Extension to Arbitrary Cloth Meshes 

The results of this project indicate that simulation performance is more significantly affected by the number 

of passes (indicated by the timestep and method used), rather than the number of cloth points. By adding an 

additional level of indirection and reducing the number of texture dimensions to one, this simulator could 

be extended to work for arbitrary meshes (shirts, dresses, etc.) The cloth point position texture would be a 

one-dimensional array. Instead of implicit spring/cloth point associations, a single 1D spring texture would 

contain texture coordinates pointing to two cloth point locations the cloth position texture (as well as 

storing the default length of the spring). Another texture set (at least two would be necessary, possibly 

three) would hold pointers to connected springs for each cloth point. The relation of the point to the spring 

force (forward or backward) could be stored as the sign of this 1D texture coordinate – Mirrored texture 

address mode could be used to automatically correct for the sign. 

 

4.4. Spline Surface Interpolation 

Instead of performing costly physics calculations on a large number of cloth points, a good visual result 

could be achieved by using a smaller number of cloth points and spline-interpolating between these points 

using a vertex shader as described in [Dunlop02]. 

 

4.5. Wind 

By calculating surface normals at every timestep as opposed to every visible frame, these values could be 

used to calculate wind force against the cloth surface. 

 

 

5. Acknowledgements 

In addition to the CS205 teaching staff, I’d like to thank Mike Mandel, Ian Buck, Josh Bao, Goeffrey 

Irving, and Neil Molino for taking the time to meet with me to discuss cloth simulation and GPU 

programming. 



 

6. References 

 

1) Engel, WF et al. “Direct3D ShaderX”. Wordware Publishing. Texas, 2002. 

2) “DirectX 9.0 Programmer's Reference”. Microsoft Corporation 2003. 

3) Heath, MT. “Scientific Computing: An Introductory Survey”. Second Edition. McGraw-Hill. New 

York, 2002. 

4) Miller, T. “Managed DirectX 9 Graphics and Game Programming”. Sams Publishing. 

Indianapolis, 2004. 

5) Matyka, M. “Inverse Dynamic Displacement Constraints in Real-Time Cloth and Soft-Body 

Models” in Graphics Programming Methods. Charles River Media. Hingham, 2003. 

6) Desbrun, M et al. “Interactive Animation of Cloth-like Objects for Virtual Reality”. The Journal of 

Visualization and Computer Animation, Volume 12, Issue 1, May 2001, pages 1-12.  

Online: http://www-grail.usc.edu/pubs/DMB_chapterBook.pdf 

7) Jacobson, T. “Advanced Character Physics”. Gamasutra. 2003.  

Online: http://www.gamasutra.com/resource_guide/20030121/jacobson_04.shtml 

8) Govindajaru, NK et al. “CULLIDE: Interactive Collision Detection Between Complex Models in 

Large Environments using Graphics Hardware”. In Graphics Hardware. ACM 

SIGGRAPH/Eurographics 2003. 

Online: http://www.cs.unc.edu/~geom/CULLIDE/cullide.pdf 

9) Bridson, R et al. “Simulation of Clothing with Folds and Wrinkles”. Eurographics/SIGGRAPH 

Symposium on Computer Animation, 2003.  

Online: http://graphics.stanford.edu/papers/cloth2003/cloth.pdf 

10) Moravanszky, A. “Dense Matrix Algebra on the GPU”. In ShaderX2 Programming. 2003.  

Online: http://www.shaderx2.com/shaderx.PDF 

11) Bolz, J et al. “Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid”. 

SIGGRAPH 2003 

Online: http://www.multires.caltech.edu/pubs/GPUSim.pdf 

12) Buck, I. “Data Parallel Computation on Graphics Hardware”. Presentation at Graphics Hardware, 

2003.  

Online: http://graphics.stanford.edu/~ianbuck/GH03-Brook.ppt 

13) Dunlop, R. “Synthesizing Patches Using Vertex Shaders”. 2002. Online: 

http://www.mvps.org/directx/articles/shadeland/splinevshade3.htm 

14) Bridson, R et al. “Robust Treatment of Collisions, Contact and Friction for Cloth Animation”. 

SIGGRAPH 2002, ACM TOG 21, 594-603 (2002).  

Online: http://graphics.stanford.edu/~fedkiw/papers/stanford2002-01.pdf 

15) Fedkiw, R. “CS205: Class Notes”. Stanford University, 2003.  

Online: http://www.stanford.edu/class/cs205/ 

 

http://www-grail.usc.edu/pubs/DMB_chapterBook.pdf
http://www.gamasutra.com/resource_guide/20030121/jacobson_04.shtml
http://www.cs.unc.edu/~geom/CULLIDE/cullide.pdf
http://graphics.stanford.edu/papers/cloth2003/cloth.pdf
http://www.multires.caltech.edu/pubs/GPUSim.pdf
http://graphics.stanford.edu/~ianbuck/GH03-Brook.ppt
http://www.mvps.org/directx/articles/shadeland/splinevshade3.htm
http://graphics.stanford.edu/~fedkiw/papers/stanford2002-01.pdf

